Let ${\left( {1 + x} \right)^{10}} = \sum\limits_{r = 0}^{10} {{C_r}{x^r}} $ and ${\left( {1 + x} \right)^7} = \sum\limits_{r = 0}^7 {{d_r}{x^r}} $ . If $P = \sum\limits_{r = 0}^5 {{C_{2r}}} $ and $Q = \sum\limits_{r = 0}^3 {{d_{2r + 1}}} $ , then $\frac{P}{{2Q}}$ is equal to
$2$
$4$
$8$
$16$
If ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + .... + {C_n}{x^n}$, then the value of ${C_0} + 2{C_1} + 3{C_2} + .... + (n + 1){C_n}$ will be
Let $X =\left({ }^{10} C _1\right)^2+2\left({ }^{10} C _2\right)^2+3\left({ }^{10} C _3\right)^2+\ldots \ldots . .+10\left({ }^{10} C _{10}\right)^2$ where ${ }^{10} C _{ r }, r \in\{1,2, \ldots ., 10\}$ denote binomial coefficients. Then, the value of $\frac{1}{1430} X$ is. . . . . . .
$\frac{{{C_0}}}{1} + \frac{{{C_2}}}{3} + \frac{{{C_4}}}{5} + \frac{{{C_6}}}{7} + ....$=
Let $[ x ]$ denote greatest integer less than or equal to $x .$ If for $n \in N ,\left(1-x+x^{3}\right)^{n}=\sum_{j=0}^{3 n} a_{j} x^{j}$, then $\sum_{j=0}^{\left[\frac{3 n}{2}\right]} a_{2 j}+4 \sum_{j=0}^{\left[\frac{3 n-1}{2}\right]} a_{2 j+1}$ is equal to
Co-efficient of $\alpha ^t$ in the expansion of,
$(\alpha + p)^{m - 1} + (\alpha + p)^{m - 2} (\alpha + q) + (\alpha + p)^{m - 3} (\alpha + q)^2 + ...... (\alpha + q)^{m - 1}$
where $\alpha \ne - q$ and $p \ne q$ is :